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Abstract:  
Novelty detection, or anomaly detection, on temporal sequences 
has increasingly attracted attention from researchers in different 
areas. In this paper, we present a new framework for online 
novelty detection on temporal sequences. This framework 
includes a mechanism for associating each detection result with a 
confidence value. Based on this framework, we develop a 
concrete online detection algorithm, by modeling the temporal 
sequence using an online support vector regression algorithm. 
Experiments on both synthetic and real world data are performed 
to demonstrate the promising performance of our proposed 
detection algorithm. 
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1. INTRODUCTION 
Novelty detection, or anomaly detection, refers to the 

automatic identification of unforeseen or abnormal phenomena 
embedded in a large amount of normal data. [4, 8, 17] It can be 
applied in both time-sensitive and time-insensitive scenarios. This 
paper targets the time-sensitive case of detecting novelty in 
temporal sequences [2, 4, 5, 8], which has many immediate 
applications. For example, in a safety-critical environment, it is 
very helpful to have an automatic supervising system, which can 
screen the time series generated by monitoring sensors, and report 
any abnormal observations. Another promising application is to 
help scientists in different areas by liberating them from 
exhaustive examination of data, and drawing their attention only 
to unusual and “interesting” phenomena.  

Novelty detection is a challenging topic, mainly because it is 
hard to obtain sufficient knowledge and an accurate representative 
of “novelty” given a problem [17], which rules out the use of 
many supervised techniques. Despite its challenge, in the past 
over ten years it has been a topic acquiring increasing attention, 
and quite a few techniques have been proposed and investigated. 
These techniques were experimentally proven to be effective in 
some cases, while they can fail in other cases. For example, some 
methods were designed based on the assumption of possessing 

precise models of the underlying problem [9], or knowing the 
novelty conditions [1, 6, 13], which are generally not true in real 
world. In some other studies [3, 7, 10, 14], novelty detection was 
simply interpreted as outlier detection. However, this 
simplification produces methods that cannot discover novel 
patterns formed by several continuous instances. In particular, the 
novelty detection method proposed in [14] and [3] is based on a 
technique called one-class support vector machine, whose 
formulation forces it to “identify” some novel individuals no 
matter how normal the whole data set is. A wavelet-based signal 
trend shift detection method is proposed in [15]. Nevertheless, this 
method cannot detect short novel patterns embedded in normal 
signals. An interesting idea for novelty detection, inspired by the 
negative-selection mechanism in the immune system, was 
proposed in [4]. However, this method can fail when the negative 
set goes to null with the increasing diversity of the normal set. 
Another method for target time-series novelty detection, called 
TARZAN [8], is based on converting the time series into a 
symbolic string. However, the procedure for discretizing and 
symbolizing real values in time series, as well as the various 
choices of string-representation parameters, can cause the loss of 
meaningful patterns in the original time series.  

Furthermore, the ability to conduct online novelty detection 
is especially desirable for temporal sequences. However, few of 
the existing algorithms explicitly address this issue. The most 
relevant result is an incremental algorithm designed to detect 
normal events, instead of novel events. [5]  

In this paper, we propose a direction to detect novelty in 
temporal sequences. As with other detection algorithms, it is 
impossible for our proposed direction to succeed in all scenarios. 
However, it can at least provide an alternative and complementary 
solution to some problems in which other available techniques 
may fail. The remainder of this paper is organized as follows. A 
general online novelty detection framework is proposed in Section 
2. Based on the framework, a concrete online detection algorithm 
is proposed. Because the new algorithm utilizes a technique called 
support vector regression (SVR), Section 3 is devoted to a brief 
introduction to SVR. The new algorithm, as well as issues 
involved in its implementation, is presented in Section 4. Two 
variants of the original detection algorithms are proposed in 
Section 5 to adapt the original algorithm to different application 
scenarios. Experiments are proposed in Section 6.  

The main contributions of this paper are (a) It proposes an 
online novelty detection framework for temporal sequences. This 
online framework is capable of associating a confidence level 
with each detection result. (b) It proposes a concrete online 
novelty detection algorithm based on the framework, and 
describes experiments to test the new algorithm. 
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2. A FRAMEWORK FOR ONLINE 
NOVELTY DETECTION WITH 
CONFIDENCE 

We first reflect on the concept of novelty, as well as that of 
novelty detection, philosophically. First of all, novelty is always a 
relative concept with regard to our current knowledge.  Therefore, 
novelty should be defined in the context of a representation of our 
current knowledge. Such representation can be a database, a 
knowledge base, or a model. In our framework, we prefer 
representing our knowledge with a model, simply because of its 
mathematical neatness. Moreover, in online applications, it is 
desirable that the representation of our knowledge can also be 
updated with the acquisition of new data. Second, there is 
generally no clear-cut line between novel events and normal 
events in real world application. Therefore, it is attractive to 
associate with each novel event a value to characterize how 
confident we are about our judgment. Finally, in a real world 
environment with noise the novel events in a temporal sequence 
are generally associated with segments, instead of individual time 
points. These understandings lay the foundation of a formal 
formulation of an online novel detection framework, which is 
defined in the remaining part of this section.  

In this paper, a temporal sequences is represented as ( )tX , 

where 1t N= L . They can be time series, video sequences, or 
some other objects that can be indexed by time t. ( )tX  is a 
stochastic process, and ( )tx  is employed to represent one of its 

realizations.  

As we mentioned previously, we utilize a model 
0( )txM  to 

represent our knowledge about the underlying temporal sequence 
up to 

0t . This model can be a physics-based model provided by 
domain experts, or a model constructed from available data ( )tx , 

where 
01t t= L .  

Surely, it is impossible for us to utilize a model with finite 
number of parameters to completely represent the information 
embedded in a random temporal sequence. Also, each model may 
only be good at representing certain types of information, because 
different models have different sensitivity to different type of 
information. For example, some models are more sensitive to 
extreme values, while some other models are more sensitive to 
unusual patterns. However, this selective property of model-based 
knowledge representation, when applied to novelty detection, can 
become an advantage. In a particular application, we may only be 
interested in some types of novelties among all of the different 
possible novelties. Thus, utilizing different models provides us 
with the opportunities of selecting different types of interested 
novelties.  

Definition 1 (Matching Value and Matching Function) 

The matching function, denoted as 
0 0( ( 1), ( ))F t t−xM x , is a 

function that can quantify how well the model 
0( )txM  matches the 

temporal sequence. The match value 
0( )V t , where 

0( )V t ∈R , is 

defined as 
0 0 0( ) ( ( 1), ( ))V t F t t= −xM x .  

In other words, the matching value 
0( )V t  is employed to measure 

how well our knowledge about the time series at 
0 1t − , 

represented by 
0( 1)t −xM , can describe the instance 

0( )tx . 

Definition 2 (Occurrence)  

Denoted by 
0( )O t , occurrence at 

0t  is defined as 

0 0 0 0( ) { ( ) ( ( ), ( ))}O t I V t t tε ε≡ ∉ −                                                  (1) 

where { }I i  is the indicator function, and 
02 ( ) 0tε >  is a 

predefined tolerance width. 

0( )tε  can be determined based on the noise level, as well as the 
precision requirement of the underlying problem. Note that 

0( )O t is a random variable. 

Definition 3 (S urprise) 

A surprise is observed if 
0( ) 1O t = .  

That is, a surprise happens when a new instance 
0( )tx  falls 

outside of the tolerance range 
0 0( ( ), ( ))t tε ε− .  

Definition 4 (Event and Event Duration)  

Denoted by 
0( )nE t , an event at time 0t is defined as  

[ ]0 0 0 0( ) ( ) ( 1) ( 1) T
nE t O t O t O t n= + + −L                          (2a) 

where n is called the event duration. The 1-norm of 
0( )nE t  is 

denoted as 
0( )nE t . That is 

1

0 0
0

( ) ( )
n

n
i

E t O t i
−

=

= +∑                                                                   (2b) 

0( )nE t is the number of surprises happened in the event 
0( )nE t . 

Event duration n is a predetermined algorithmic parameter. We 
omit the absolute operation on 

0( )O t i+  in (2b) because 
0( )O t i+  

is nonnegative according to (1). 
0( )nE t  is a random binary vector 

with at most 2n  different realizations, while 
0( )nE t  is a random 

variable with at most n+1 different realizations. A realization of 

0( )nE t  (or 
0( )nE t ) is denoted as 

0( )ne t  (or 
0( )ne t ). The discrete 

density function of 
0( )nE t  is represented as 

0( ( ) )
nE np e t , 

where
0( ) 0ne t n= L . The formulation of 

0( ( ) )
nE np e t  can be 

determined by the occurrences
0( ), 0 1O t i i n+ = −L . For example, 

if the occurrences in 
0{ ( ), 0 1}O t i i n+ = −L  are identical 

independent Bernoulli variables, 
0( )nE t  becomes a binomial 

random variable. 
0( ( ) )

nE np e t  will be different if the occurrences 

in 
0{ ( ), 0 1}O t i i n+ = −L  are interdependent, such as following a 

Markov chain distribution.  

Definition 5 (Novel Event with Confidence) 

Given a confidence level 
0( )c t , where 

0( ) (0,1)c t ∈ , Event 
0( )ne t  

is defined as a novel event with confidence 
0( )c t , if 

0( )ne t  

satisfies  

(a) 
0 0( ) max( , { ( )})n ne t h E t> E , where { }E i  is the mean, h is a 

fixed lower bound of 
0( )nE t  with h ∈N , and                          (3a) 

(b) 
0 0( ( ) ) 1 ( )

nE np e t c t< − .                                                         (3b) 



The condition (3a) makes sure that at least certain number of 
surprises happen in the event 

0( )ne t , while the condition (3b) 
ensures that the probability for the number of surprises to happen 
in the event 

0( )ne t  is small enough to satisfy our confidence level 

0( )c t . The h is an algorithmic parameter to define the lower 

bound of the number of surprises.  
Four items in this framework need to be instantiated before it 

becomes a concrete algorithm. (a) The model 
0( )txM  to represent 

the temporal sequence ( )tX ; (b) The matching function 

0 0( ( 1), ( ))F t t−xM x  to quantify the disagreement between the 

model output and the temporal sequence ( )tX  observation at 
0t ; 

(c) The tolerance width 
02 ( )tε at 

0t ; (d) The discrete density 

function of 
0( )nE t , 

0( ( ) )
nE np e t , where 0m n= L . In Section 4, 

a concrete algorithm is derived by instantiating all these four 
items in the framework.   

 

3. A BRIEF INTRODUCTION TO 
SUPPORT VECTOR REGRESSION 

Because the algorithm proposed in Section 4 is extensively 
based on a regression technique, called Support Vector 
Regression (SVR), we briefly introduce the basic concepts of 
SVR in this section. A more detailed presentation of SVR can be 
found in [16]. 

Given a training set {( , ), 1 . . .}i iT y i l= =x , where D
i ∈x R , 

and 
iy ∈ R , we construct a linear regression function with regard 

to W and ( )Φ x  

( ) ( )Tf b= Φ +x W x                                                                      (4) 

where W and ( )Φ x  are vectors in a huge dimensional feature 
space F.  Meanwhile, ( )Φ x  can also be considered as a mapping 

function, which maps D∈x R  to a vector in F. The W  and b in 
(4) are obtained by solving an optimization problem: 

*

,
1

*

*

1min ( )
2

. . ( ( ) )

( ( ) )

, 0, 1

l
T

i ib
i

T
i i
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i l
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ε ξ

ε ξ
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Φ + − ≤ +

≥ =

∑W
W W

W x

W x

L

                                       (5) 

The optimization criterion penalizes data points whose y-
values differ from f (x) by more than ε. The slack variables ξ and 
ξ *  represent the size of this excess deviation for positive and 
negative deviations respectively. Introducing Lagrange multipliers 
α and α*, we get: 

*

* *

, 1 1

* *

1 1

* *

1

1
min ( )( )

2
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L

         (6) 

where ( ) ( ) ( , )T
ij i j i jQ K= Φ Φ =x x x x . Here ( , )i jK x x  is a kernel 

function [16]. Given the solution of (6), the regression function 
(4) can be written: 

1

( ) ( , )
l

i i
i

f K bθ
=

= +∑x x x                                                                (7) 

where the coefficient *
i i iθ α α= − . (7) is a nonlinear function with 

regard to D∈x R if the kernel function ( , )i jK x x  is chosen as a 

nonlinear function. Normally, only a small fraction of the 
coefficients 

iθ  in (7) are finally nonzero. Those samples 
ix  with 

nonzero 
iθ  are called support vectors of the regression function, 

because it is these critical samples in the training set T that solely 
determine the formulation of (7).   

 

4. AN SVR-BASED ONLINE NOVELTY 
DETECTION ALGORITHM 

In this section, we instantiate the four items in the framework 
listed in Section 2 to devise a novelty detection algorithm. 

First, SVR is employed to model a temporal sequence ( )tX . 
SVR has quite a few attractive features. For example, (a) the 
regression function ( )f x  obtained by SVR can approximate any 
nonlinear relationship between the input vector x and its 
associated target value y if a proper kernel function ( , )i jK x x  is 

chosen, (b) SVR has good generalization properties, and (c) SVR 
can handle high dimensional data efficiently.  

More sp ecifically, given a realization of a temporal sequence, 
or ( )tx , where 

01t t= L , we can construct a set of training 

samples 
0( )DT t  from ( )tx   

0 0( ) {( , ), 1}t t
D DT t t D t= = −x y L ,                                             (8) 

where [ ( 1) ( ) ]t T
D t D t= − +x x xL , ( 1)t t= +y x , and D is 

called the embedding dimension of the training set 
0( )DT t . 

According to Section 3, from the training set 
0( )DT t  SVR training 

algorithm can construct a regression function 0( )t
Df x  

0
0 0 0

1

0
1

( 1) ( ) ( , )
t

t t tt
D i D D

t

t f K bθ
−

=

= + = = +∑y x x x x) )                                (9) 

Naturally, the model 
0( )txM  representing the temporal 

sequence ( )tX  can be defined as  

0

0 0

1

0( ) ( ) ( , )
t

t tt
D i D D

i E

t f K bθ
−

=

= = +∑xM x x x                           (10) 

Equation (10) suggests that model 
0( )txM  essentially 

incorporates all the points of the temporal sequence ( )tx , where 

01t t= L , and thus is a good candidate for representing our 

acquired knowledge of ( )tX . 

Second, the matching function and the matching value are 
defined as  

0 0 0

0 0 0 0

( ) ( ( 1), ( ))

( ) ( 1) ( ) ( )

V t F t t

t t t t

= −

= − − = −
x

x

M x

x M x x)
                                     (11) 



Equation (11) indeed suggests that the matching value 
0( )V t  is 

the residual of the regression function (9) at 
0t . 

Third, we need to define the tolerance width 
02 ( )tε at 

0t . 

Fortunately, SVR formulation generally adopts an ε -insensitive 
loss function [16], which possesses exactly the same flavor as our 
tolerant range defined in Definition 2. Thus, we just simply merge 
the concepts of two tolerant ranges together, and define the 
tolerant width in Definition 2 as 2ε  for any 

0t , where ε  is the 

insensitive parameter in the ε -insensitive loss function of SVR. A 
direct consequence of this definition is that any sample 0 0( , )t t

Dx y  

in 
0( )DT t  that turns to be a surprise to model 

0( )txM  will be a 

support vector in the updated model 
0( 1)t +xM  [16].  

Finally, in order to make our algorithm theoretically 
tractable, we simply define 

0( )nE t as a sequence of independent 
Bernoulli random variables with the same parameter, and the 
discrete density function of 

0( )nE t , 
0( ( ) )

nE np e t , can thus be 

formulated as [12]   

0 0

0

( ) ( )
0 0

0

0

( ( ) )

( ) (1 ( )) ,
( )

( ) 0

0,

n

n n

E n

e t n e t

n

n

p e t

n
q t q t

e t

where e t n

otherwise

−

=

 
− 

 
=





L

                            (12) 

where 
0( )q t  is the probability of an occurrence in the event 

0( )nE t  to be a surprise. The 
0( )q t  can be approximately estimated 

as 

0
0

0

( )
( ) SVN t

q t
t D

=
−

) ,                                                                          (13) 

where 
0( )SVN t  is the number of support vectors in model 

0( )txM ,  

and 
0t D− is the number of training samples in 

0( )DT t  according 

to (8).  
This definition is valid under the following two assumptions 

(a) The occurrences in an event are independent; (b) All 
occurrences in an event have approximately the same probability 
of being a surprise. Intuitively, the first assumption is reasonable 
if the regression function (9) can sufficiently capture the 
dependent relationship in a temporal sequence. This can be 
achieved by an adequate training stage to fully build the model 

0( )txM  before it is utilized for detection. The second assumption 

is sensible if the event duration n is not too large. More discussion 
of the role that event duration n plays in the algorithm will be 
presented in Subsection 5.1. Failure of meeting either assumption 
deteriorates the accuracy of the confidence level associated with 
the detection output. 

We now have a complete online novelty detection algorithm 
has been proposed based the framework in Section 2. This 
algorithm requires a set of algorithmic parameters, which include 
(a) Embedding dimension D; (b) Event duration n; (c) Tolerant 
width 2ε ; (d) Kernel function ( , )i jK x x ; (e) Confidence level c ; 

and (f) Fixed lower bound of the number of surprises h. The 
algorithmic procedures can be summarized as follows: 

1) At training stage, 

i) When a new point in the temporal sequence 
0( )tx becomes 

available, the training set 
0( 1)DT t −  will be updated to 

0( )DT t  

following (8). Accordingly, the model 
0( 1)t −xM will also be 

updated to 
0( )txM  based on the 

0( )DT t . 

ii) If training stage does not finish, go to step i). Otherwise, 
move to the detection stage. 

2) At detection stage, 

i) When a new point in the temporal sequence 
0( )tx becomes 

available, calculate the matching value 
0( )V t  following (11).  

ii) Based on 
0( )V t  and the tolerant width 2ε , determine the 

value of occurrence 
0( )O t  following (1). 

iii) Based on the values of occurrence 
0( )O t i− , where 

0 1i n= −L , determine the value of event 
0( 1)nE t n− +  

following (2). If 
0( 1)nE t n− +  meets the conditions in (3), a 

novel event, which starts at 
0 1t n− +  and ends at 

0t , is 

detected with a confidence of c. 

iv) The training set 
0( 1)DT t −  is updated to 

0( )DT t  by 

considering the new point 
0( )tx  following (8). Accordingly, 

the model 
0( 1)t −xM is then updated to 

0( )txM  based on 

0( )DT t . 

v) If the detection stage does not finish, go to step i). Otherwise, 
quit. 
Finally, it is worth mentioning that the SVR training 

algorithm introduced in Section 3 is a batch algorithm. That is, 
whenever a new sample is added into the training set, the existing 
regression function can only be updated by retraining the whole 
training set, which is not an efficient way to implement our 
detection algorithm. Fortunately, we have recently derived an 
incremental SVR training algorithm [11], which can efficiently 
update the regression function whenever a sample is added to or 
removed from the training set.  

 

5. TWO VARIANTS OF THE NOVELTY 
DETECTION ALGORITHM 

When we apply this algorithm to particular real world 
scenarios, it is sometimes necessary to fine-tune some parts of the 
algorithms to meet the special requirements of an application.  In 
this section, we propose two variants of the original algorithm.  

 

5.1 Robust Online Novelty Detection  
The event duration n is a critical parameter in the detection 

algorithm. In some cases where the novel events are outstanding, 
the original algorithm is not sensitive to event duration n. This can 
be illustrated by experiments in Section 6. However, in the other 
cases, an improper choice of this parameter does lead to the 
deterioration of the algorithmic performance. Meanwhile, it is 



hard to know in advance what kind of novel events will be 
detected in a temporal sequence, which is indeed the nature of 
novelty detection.   

Although, given a particular problem, how to select an 
optimal event duration n for the original detection algorithm is 
still an open topic, in some applications it is possible for us to 
know the range in which an optimal event duration n may fall in. 
Based on this assumption, a robust version of the original 
detection algorithm can be intuitively devised. In this variant, we 
evenly pick up r different event duration n’s from the available 
range, and apply each of them to the original detection algorithm, 
and thus obtain r detection outputs. The final robust detection 
output is obtained by a voting procedure among all the generated 
outputs. When implementing this idea, it is not necessary to 
literally repeat the original detection algorithm for each event 
duration n. Repeating merely the step iii) at the detection stage for 
each event duration n is adequate.  

 

5.2 Fixed-Resource Online Novelty Detection  
One problem with our original detection algorithm is the 

longer the prediction goes on, the bigger the training set 
0( )DT t  

will become, and the more SVs will be involved in the SVR 
regression function (9). In some environments with limited 
memory and computational power, it is possible to stress out the 
system resources with the complexity of the SVR model (9) 
growing in this way. One way to deal with this problem is to 
impose a “forgetting” time W. When training set 

0( )DT t  grows to 
this maximum W, then the SVR model (9) will first be trained to 
remove the oldest sample before the next new sample is used to 
update the model. Accordingly, the 

0( )q t  in (13) becomes 

0
0

( )
( ) SVN t

q t
W

=) , where 
0( )SVN t  is still the number of support 

vectors in model 
0( )txM . 

This variant is intrinsically suitable for non-stationary 
temporal sequences, as it can be updated in real-time to fit the 
most recent behavior of a temporal sequence.  

 

6. EXPERIMENTS 
Experiments based on both synthetic and measured data are 

presented to demonstrate the performance of our algorithm. 
According to our knowledge, a comparable automatic online 
novelty detection algorithm supported by confidence is still not 
available in other literatures when we prepare this paper. 
Therefore, it is difficult for us to implement comparative 
experiments to justify our performance.  Thus, we here do it by 
comparing our detection results with visual detection by humans.  

 

6.1 Experiments Based on Synthetic Data 
Three synthetic time series are generated from the following 

stochastic processes respectively. 

1

40
( ) sin( ) ( )t t n t

N
π

= +X                                                            (14a) 

2 1

40
( ) sin( ) ( ) ( )t t n t e t

N
π

= + +X                                                 (14b) 

3 1 2

40
( ) sin( ) ( ) ( ) ( )t t n t e t e t

N
π

= + + +X                                       (14c) 

where 1t N= L , 1200N = , and ( )n t  is an additive Gaussian 

noise with zero-mean and a SDT of 0.1. 
1( )e t  and 

2 ( )e t are two 

novel events,  

1
1

( ) , [600,620]
( )

0,
n t t

e t
otheriwse
∈

= 


 

where 
1( )n t  follows a normal distribution of (0,0.5)N . 

2

40
0.4*sin( ), [820,870]

( )
0,

t t
e t N

otheriwse

π ∈= 


 

We use the first 400 points in the three time series to train 
our models, and conduct the novelty detection on the remaining 
800 points. The algorithmic parameters are arbitrarily set as (a) 
Embedding dimension D=8; (b) Event duration n=6; (c) Tolerant 
width 2ε =0.2; (d) Kernel function 2( , ) exp{ }i j i iK = − −x x x x ; 

(e) Confidence level c = 95%; (f) Fixed lower bound of number 
of surprises  h =n/2. The experimental results are demonstrated in 
Figure 1.  

The blue curves in Figure 1 are the synthetic time series, and 
the peaks on the red lines indicate the positions and durations of 
the detected novel events. Because the first 400 points of each 
time series are taken out for training the support vector regression 
functions, no detection outputs are produced at that segment.  

 
Figure 1. Experimental Results on Synthetic Time Series 

 
The plots in Figure 1 show that, our detection algorithm 

successfully detects all the novel events in 
2 ( )tx  and 

3 ( )tx . 
Meanwhile, our algorithm properly figures out that no any part of 
the 

1( )tx  can be considered as a novel event. As suggested in 
Subsection 5.1, because the novel events in these synthetic time 
series are fairly distinguishable, the detection output of the 
original detection algorithm is not sensitive to the choice of event 
duration n. It can be shown that the same detection output can be 
produced when event duration n is set to 8 or 10. 

 

6.2 An Experiment Based on Measured Data 
The experiment is to apply the original detection algorithm to 

the famous Santa Fe Institute Competition data, which is 1000-
point time series. We define the first 200 points as the train 



segment, and the remaining 800 points as the detection segment. 
The algorithmic parameters are set exactly the same as the 
experiments done in Subsection 6.1. The time series, along with 
the detection results, are plotted in Figure 2. 

 
Figure 2. Experimental Results on Santa Fe Institute Time 

Series 

 
In this experiment our algorithm claims that two novel events 

happen in the detection segment of the time series. It is easy to 
visually examine its validity. Also, similar to the experiments 
done in Subsection 6.1, this Santa Fe Institute Time Series is also 
insensitive to different choice of event duration n. The same result 
can be obtained if we set the event duration n to 8 or 10.  

 

7. CONCLUSIONS 
This paper proposes a new direction for online novelty 

detection on temporal sequences. Primitive experimental results 
demonstrate the promising performance of this algorithm.  

Meanwhile, many topics brought up by this paper are still 
open. For example, we notice that some relationship exists among 
the algorithm parameters, such as event duration n, tolerant width 
2ε , and confidence level c. However, we still cannot figure out a 
method to make use of this relationship to define a set of optimal 
algorithmic parameters. Also, intuitively, for some temporal 
sequences, Markov chain can be a better model than Binomial 
distribution to describe the relationship among the occurrences 

0( )O t . Thus, how to implement this intuition is another direction 
worth future investigation.  Surely, new detection algorithms can 
also be devised by employing different temporal sequence 
models, such as data clustering and one-class support vector 
machine. 
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